Publications

Saint-Marc, P. (1974). Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Muséum national d’histoire naturelle.
Saint-Marc, P. (1974). Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Muséum national d’histoire naturelle.
Frem, M., & Saad, S. (2021). Spatially Distributed Groundwater Recharge Estimation through the Application of a Long Term Regional Water Balance using Geographic Information Systems: A Case Study for Lebanon. 178.
Capriolo, M., Marzoli, A., Aradi, L. E., Callegaro, S., Corso, J. D., Newton, R. J., Mills, B. J. W., Wignall, P. B., Bartoli, O., Baker, D. R., Youbi, N., Remusat, L., Spiess, R., & Szabo, C. (2021). Deep CO2 from the Central Atlantic Magmatic Province during the end-Triassic mass extinction (No. EGU21-11189). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-11189
Tabor, C., Otto-Bliesner, B., & Liu, Z. (2021). Speleothems of South American and Asian Monsoons Influenced by a Green Sahara (No. EGU21-13896). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13896
Tabor, C., Otto-Bliesner, B., & Liu, Z. (2021). Speleothems of South American and Asian Monsoons Influenced by a Green Sahara (No. EGU21-13896). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13896
Kessler, A., Roche, D., Galaasen, E., Tjiputra, J., Bouttes, N., & Ninnemann, U. (2021). AMOC instability during the Last Inerglacial (No. EGU21-12364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-12364
Grasby, S., Bond, D., Wignall, P., Yin, R., Strachan, L., Takahashi, S., & Ardakani, O. (2021). Deep marine anoxia of the southern Panthalassa during the Permian-Triassic – global impacts of the Siberian Traps (No. EGU21-13733). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13733
Nehme, C., Todisco, D., Breitenbach, S., Couchoud, I., Girault, I., Martin, F., Borrerro, L., Hellstrom, J., Tjallingi, R., & Claeys, P. (n.d.). Climate Variability reconstructed from Cueva Chica speleothems for the last 13 ka BP: implications for Megafauna in Southern Patagonia, Chile. 16.
Clarkson, M., Lenton, T., Stirling, C., Dickson, A., & Vance, D. (2021). Toward a quantitative framework for assessing the global severity of Oceanic Anoxic Events (No. EGU21-2730). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-2730
Bomou, B., Suan, G., Schlögl, J., Grosjean, A.-S., Suchéras-Marx, B., Adatte, T., Spangenberg, J., Fouché, S., Zacai, A., Gibert, C., Brazier, J.-M., Perrier, V., Vincent, P., Janneau, K., & Martin, J. E. (2021). Record of the Toarcian oceanic anoxic event in the Grands Causses Basin (southern France) and its implications for vertebrate preservation (No. EGU21-11835). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-11835
Nunez, F., Colin-Rodríguez, A., Adatte, T., Omaña-Pulido, L., Alfonso, P., Pi, T., Correa-Metrio, A., Barragán, R., Martínez-Yáñez, M., & Cárdenas, J. J. E. (2021). The Cenomanian–Turonian Oceanic Anoxic Event 2 and the Late Turonian-Coniacian Event in the Mexican Interior Basin (No. EGU21-13968). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13968
Adatte, T., Keller, G., Spangenberg, J. E., Mateo, P., Punekar, J., Monkenbusch, J., Thibault, N., Abramovich, S., Schoene, B., Eddy, M. P., Samperton, K., & Khadri, S. F. R. (2021). Paroxysmal Deccan Eruptions linked to End-Cretaceous Mass Extinction (No. EGU21-10700). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-10700
Jin, S., Kemp, D., Jolley, D., Vieira, M., & Huang, C. (2021). Large-scale siliciclastic input during the Paleocene-Eocene Thermal Maximum in the North Sea Basin (No. EGU21-3731). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-3731
Nader, F. H., Browning‐Stamp, P., & Lecomte, J.-C. (2016). Geological Interpretation of 2d Seismic Reflection Profiles Onshore Lebanon: Implications for Petroleum Exploration. Journal of Petroleum Geology, 39(4), 333–356. https://doi.org/https://doi.org/10.1111/jpg.12656
Bakalowicz, M., El Hakim, M., & El-Hajj, A. (2008). Karst groundwater resources in the countries of eastern Mediterranean: the example of Lebanon. Environmental Geology, 54(3), 597–604. https://doi.org/10.1007/s00254-007-0854-z
Saadeh, M. (2021). Influence of Overexploitation and Seawater Intrusion on the Quality of Groundwater in Greater Beirut.
Saadeh, M., & Wakim, E. (2017). Deterioration of Groundwater in Beirut Due to Seawater Intrusion. Journal of Geoscience and Environment Protection, 5(11), 149–159. https://doi.org/10.4236/gep.2017.511011
Hajj, A. E.-. (2008). L’aquifère carbonate karstique de Chekka (Liban) et ses exutoires sous-marins: caractéristiques hydrogéologiques et fonctionnement [Thèse de doctorat]. Université Saint-Joseph (Beyrouth). Ecole supérieure d’ingénieurs de Beyrouth.
Foucault, A. (2016). Climatologie et paléoclimatologie.
IPCC. (n.d.). CHAPTER 11 N2O Emission From Managed Soils, And CO2 Emissions From Lime And Urea Application.
Barange, M., Butenschön, M., Yool, A., Beaumont, N., Fernandes, J. A., Martin, A. P., & Allen, J. I. (2017). The Cost of Reducing the North Atlantic Ocean Biological Carbon Pump. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00290
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B., Pan, S., Liu, M., Zhang, C., Bruhwiler, L., & Wofsy, S. (2015). Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability, 1(1), 1–20. https://doi.org/10.1890/EHS14-0015.1
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews, 21, 712–727. https://doi.org/10.1016/j.rser.2012.12.038
Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., Rolinski, S., Stevanovic, M., & Dietrich, J. P. (2014). Land-use protection for climate change mitigation. Nature Climate Change, 4(12), 1095–1098. https://doi.org/10.1038/nclimate2444
Nicholls, R. J., & Lowe, J. A. (2004). Benefits of mitigation of climate change for coastal areas. Global Environmental Change, 14(3), 229–244. https://doi.org/10.1016/j.gloenvcha.2004.04.005
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., & Pondaven, P. (2018). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1–2), 33–57. https://doi.org/10.1007/s10584-011-0149-y
Del Grosso, S. J., Wirth, T., Ogle, S. M., & Parton, W. J. (2008). Estimating Agricultural Nitrous Oxide Emissions. Eos, Transactions American Geophysical Union, 89(51), 529. https://doi.org/10.1029/2008EO510001
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R., Waterman, L. S., & Chin, J. F. S. (1976). Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28(6), 538–551. https://doi.org/10.1111/j.2153-3490.1976.tb00701.x
Fearnside, P. M. (n.d.). Why a 100-Year Time Horizon should be used for GlobalWarming Mitigation Calculations. 12.
Pissart, A. (n.d.). Concernant la disparition du Gulf Stream pendant la dernière glaciation et le danger de voir se reproduire ce phénomène catastrophique pour l’Europe. 5.
Hofmann, D. J., Butler, J. H., Dlugokencky, E. J., Elkins, J. W., Masarie, K., Montzka, S. A., & Tans, P. (2006). The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus B: Chemical and Physical Meteorology, 58(5), 614–619. https://doi.org/10.1111/j.1600-0889.2006.00201.x
Kane, R. P., & de Paula, E. R. (1996). Atmospheric CO2 changes at Mauna Loa, Hawaii. Journal of Atmospheric and Terrestrial Physics, 58(15), 1673–1681. https://doi.org/10.1016/0021-9169(95)00193-X
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyutov, S. (2009). Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA, 5, 160–163. https://doi.org/10.2151/sola.2009-041
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., & Janssens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific Data, 7(1), 121. https://doi.org/10.1038/s41597-020-0462-2
Oudar, T., Gomez, E. S., Chauvin, F., Cattiaux, J., Terray, L., & Cassou, C. (n.d.). Respective role of each GHG and induced ice loss on the N.H atmospheric circulation oudar2017.pdf.
Abdallah, C., & Bou Kheir, R. (n.d.). A quantitative model for predicting gully erosion risk in karstified Mediterranean environments: Lebanon case study. ResearchGate. https://doi.org/10.2489/jswc.64.2.67A
Baldini, L. M., McDermott, F., & Baldini, J. U. L. (n.d.). Detecting NAO-mode variability in high-resolution speleothem isotope records. Geochimica et Cosmochimica Acta, 70(18), A31. Retrieved March 20, 2021, from https://www.academia.edu/17064155/Detecting_NAO_mode_variability_in_high_resolution_speleothem_isotope_records
Edgell, H. S. (1997). Karst and hydrogeology of Lebanon. Carbonates and Evaporites, 12(2), 220–235. https://doi.org/10.1007/BF03175419
Sanlaville, P. (1969). Les bas niveaux marins pléistocènes du Liban. Méditerranée, 10(3), 257–292. https://doi.org/10.3406/medit.1969.1322
Stefaniuk, L., Morhange, C., Saghieh-Beydoun, M., Frost, H., Bourcier, M., & Noujaim-Clark, G. (n.d.). Localisation et étude paléoenvironnementale des ports antiques de Byblos. 23.
Coastal and ancient harbour geoarchaeology. (2010). Geology Today, 26(1), 7.
Mitri, G., Nasrallah, G., Gebrael, K., & Bou Nassar, M. (2019). Assessing land degradation and identifying potential sustainable land management practices at the subnational level in Lebanon. Environmental Monitoring and Assessment, 191(9). https://doi.org/10.1007/s10661-019-7739-y
Cheddadi, R., & Khater, C. (2016). Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quaternary Science Reviews, 12.
Morhange, C., Dubuquoy, O., De Beaulieu, J., Bourcier, M., Oberlin, C., & Frost, H. (n.d.). Nouvelles données Paléo-environnementales sur le port antique de Sidon. Proposition de datation.
Stefaniuk, L., Morhange, C., Saghieh-Beydoun, M., Frost, H., Bourcier, M., & Noujaim-Clark, G. (n.d.). Localisation et étude paléoenvironnementale des ports antiques de Byblos. 23.
Tohmé, G., & Tohmé, H. (2014). NOUVELLE LISTE DES ESPÈCES DE FOURMIS DU LIBAN (HYMENOPTERA, FORMICOIDEA).
Darwich, R. (n.d.). How Can Lebanon Rescue Its Drought-Stricken Wine Industry? Al Bawaba. Retrieved September 23, 2020, from https://www.albawaba.com/business/how-can-lebanon-rescue-its-drought-stricken-wine-industry
Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z., Yin, J. J., Yi, L., Peng, Y. B., Rao, Z. G., Ning, Y. F., & Edwards, R. L. (2015). The climate variability in northern Levant over the past 20,000 years. Geophysical Research Letters, 42(20), 8641–8650. https://doi.org/10.1002/2015GL065397