Publications

Dagher, F., & Jabbour-Gedeon, B. (n.d.). Mgharet Nabaa Qatra.
Jabbour-Gedeon, B. (n.d.). Mgharet el Mhadded.
Abdul Nour, H., & Assil, G. (n.d.). Houet Maqlaa el Blat : de nouvelles perspectives.
Abdel Nour, H. (n.d.). Mgharet Rmeile : grotte-témoin d’un réseau caché.
Rechmany, H., Wazen, Z., & Zoghbi, M. (n.d.). Houet RACHAAÏNE: Une doline d’effondrement. 3.
Rechmany, H., & Zoghbi, M. (n.d.). Mgharet Aidoud.
Jabbour-Gedeon, B. (n.d.). Houet Rass Osta : un dépotoir explosif.
Abdul-Nour, H., Jabbour-Gedeon, B., & Mehanna, F. (n.d.). Mgharet Hanna Boustany.
Abdul-Nour, H., & Abou Akar, J. (n.d.). Mgharet Touaite.
Beayno, F., & Jabbour-Gedeon, B. (n.d.). Mgharet Ouadi el Hadid.
Abdul-Nour, H., & Abdul-Nour, N. (n.d.). Mgharet El Terrache : de nouvelles perspectives ?
Geze, R. (n.d.). Vestiges osseux et lithiques de mgharet Mar Challita.
Abdul-Nour, H., Geze, R., & Kallab, O. (n.d.). Mgharet MAR CHALLITA: multiples facettes d’une grotte mal connue. 3.
Abdul-Nour, H., & Jabbour-Gedeon, B. (n.d.). L’ermitage rupestre et la grotte de MAR ASSIA Ou Des Ethiopiens dans la QADISHA. 5.
Abdul-Nour, H., & Mehanna, F. (n.d.). MAR SARKIS (Ouadi Qannoubine – Mar Aboun): Vestiges d’ermitage rupestre et grotte-chapelle. 3.
Nour, H. A.-, Beayno, F., & Jabbour-Gedeon, B. (n.d.). Nouvelles découvertes dans la grotte de AIN EL LIBNE. 3.
Fadel, A. (2017). THE LEBANESE NATIONAL MONITORING PROGRAMME FOR COAST AND HYDROGRAPHY INDICATORS IN THE FRAMEWORK OF ECAP-MED II. https://doi.org/10.13140/RG.2.2.25151.76964
Sanlaville, P. (1963). Les régions agricoles du Liban. Revue de géographie de Lyon, 38(1), 47–90. https://doi.org/10.3406/geoca.1963.1751
Harb, J., & Comair, F. (2008). Monitoring irrigation water, analysis and database maintenance for Nahr Ibrahim. Sustainable Irrigation Management, Technologies and Policies II, I, 143–151. https://doi.org/10.2495/SI080151
C, C., Maignant, G., Zaarour, R., Saliba, N., Abboud, M., & Farah, W. (2007). Transports urbains et pollution de l’air à Beyrouth-Municipe (Liban) : Application du modèle STREET.
Farah, W., Nakhlé, M. M., Abboud, M., Annesi-Maesano, I., Zaarour, R., Saliba, N., Germanos, G., & Gerard, J. (2014). Time series analysis of air pollutants in Beirut, Lebanon. Environmental Monitoring and Assessment, 186(12), 8203–8213. https://doi.org/10.1007/s10661-014-3998-9
Li, H., Xu, X.-L., Dai, D.-W., Huang, Z.-Y., Ma, Z., & Guan, Y.-J. (2020). Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. International Journal of Infectious Diseases, 97, 278–282. https://doi.org/10.1016/j.ijid.2020.05.076
Paital, B., & Agrawal, P. K. (2021). Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: a review. Environmental Chemistry Letters, 19(1), 25–42. https://doi.org/10.1007/s10311-020-01091-w
Bariche, M., Torres, M., & Azzurro, E. (2013). The Presence of the invasive Lionfish Pterois miles in the Mediterranean Sea. Mediterranean Marine Science, 14(2), 292. https://doi.org/10.12681/mms.428
Saint-Marc, P. (1974). Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Muséum national d’histoire naturelle.
Saint-Marc, P. (1974). Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Muséum national d’histoire naturelle.
Frem, M., & Saad, S. (2021). Spatially Distributed Groundwater Recharge Estimation through the Application of a Long Term Regional Water Balance using Geographic Information Systems: A Case Study for Lebanon. 178.
Capriolo, M., Marzoli, A., Aradi, L. E., Callegaro, S., Corso, J. D., Newton, R. J., Mills, B. J. W., Wignall, P. B., Bartoli, O., Baker, D. R., Youbi, N., Remusat, L., Spiess, R., & Szabo, C. (2021). Deep CO2 from the Central Atlantic Magmatic Province during the end-Triassic mass extinction (No. EGU21-11189). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-11189
Tabor, C., Otto-Bliesner, B., & Liu, Z. (2021). Speleothems of South American and Asian Monsoons Influenced by a Green Sahara (No. EGU21-13896). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13896
Tabor, C., Otto-Bliesner, B., & Liu, Z. (2021). Speleothems of South American and Asian Monsoons Influenced by a Green Sahara (No. EGU21-13896). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13896
Kessler, A., Roche, D., Galaasen, E., Tjiputra, J., Bouttes, N., & Ninnemann, U. (2021). AMOC instability during the Last Inerglacial (No. EGU21-12364). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-12364
Grasby, S., Bond, D., Wignall, P., Yin, R., Strachan, L., Takahashi, S., & Ardakani, O. (2021). Deep marine anoxia of the southern Panthalassa during the Permian-Triassic – global impacts of the Siberian Traps (No. EGU21-13733). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13733
Nehme, C., Todisco, D., Breitenbach, S., Couchoud, I., Girault, I., Martin, F., Borrerro, L., Hellstrom, J., Tjallingi, R., & Claeys, P. (n.d.). Climate Variability reconstructed from Cueva Chica speleothems for the last 13 ka BP: implications for Megafauna in Southern Patagonia, Chile. 16.
Clarkson, M., Lenton, T., Stirling, C., Dickson, A., & Vance, D. (2021). Toward a quantitative framework for assessing the global severity of Oceanic Anoxic Events (No. EGU21-2730). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-2730
Bomou, B., Suan, G., Schlögl, J., Grosjean, A.-S., Suchéras-Marx, B., Adatte, T., Spangenberg, J., Fouché, S., Zacai, A., Gibert, C., Brazier, J.-M., Perrier, V., Vincent, P., Janneau, K., & Martin, J. E. (2021). Record of the Toarcian oceanic anoxic event in the Grands Causses Basin (southern France) and its implications for vertebrate preservation (No. EGU21-11835). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-11835
Nunez, F., Colin-Rodríguez, A., Adatte, T., Omaña-Pulido, L., Alfonso, P., Pi, T., Correa-Metrio, A., Barragán, R., Martínez-Yáñez, M., & Cárdenas, J. J. E. (2021). The Cenomanian–Turonian Oceanic Anoxic Event 2 and the Late Turonian-Coniacian Event in the Mexican Interior Basin (No. EGU21-13968). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-13968
Adatte, T., Keller, G., Spangenberg, J. E., Mateo, P., Punekar, J., Monkenbusch, J., Thibault, N., Abramovich, S., Schoene, B., Eddy, M. P., Samperton, K., & Khadri, S. F. R. (2021). Paroxysmal Deccan Eruptions linked to End-Cretaceous Mass Extinction (No. EGU21-10700). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-10700
Jin, S., Kemp, D., Jolley, D., Vieira, M., & Huang, C. (2021). Large-scale siliciclastic input during the Paleocene-Eocene Thermal Maximum in the North Sea Basin (No. EGU21-3731). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-3731
Nader, F. H., Browning‐Stamp, P., & Lecomte, J.-C. (2016). Geological Interpretation of 2d Seismic Reflection Profiles Onshore Lebanon: Implications for Petroleum Exploration. Journal of Petroleum Geology, 39(4), 333–356. https://doi.org/https://doi.org/10.1111/jpg.12656
Bakalowicz, M., El Hakim, M., & El-Hajj, A. (2008). Karst groundwater resources in the countries of eastern Mediterranean: the example of Lebanon. Environmental Geology, 54(3), 597–604. https://doi.org/10.1007/s00254-007-0854-z
Saadeh, M. (2021). Influence of Overexploitation and Seawater Intrusion on the Quality of Groundwater in Greater Beirut.
Saadeh, M., & Wakim, E. (2017). Deterioration of Groundwater in Beirut Due to Seawater Intrusion. Journal of Geoscience and Environment Protection, 5(11), 149–159. https://doi.org/10.4236/gep.2017.511011
Hajj, A. E.-. (2008). L’aquifère carbonate karstique de Chekka (Liban) et ses exutoires sous-marins: caractéristiques hydrogéologiques et fonctionnement [Thèse de doctorat]. Université Saint-Joseph (Beyrouth). Ecole supérieure d’ingénieurs de Beyrouth.
Foucault, A. (2016). Climatologie et paléoclimatologie.
IPCC. (n.d.). CHAPTER 11 N2O Emission From Managed Soils, And CO2 Emissions From Lime And Urea Application.
Barange, M., Butenschön, M., Yool, A., Beaumont, N., Fernandes, J. A., Martin, A. P., & Allen, J. I. (2017). The Cost of Reducing the North Atlantic Ocean Biological Carbon Pump. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00290
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B., Pan, S., Liu, M., Zhang, C., Bruhwiler, L., & Wofsy, S. (2015). Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability, 1(1), 1–20. https://doi.org/10.1890/EHS14-0015.1
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews, 21, 712–727. https://doi.org/10.1016/j.rser.2012.12.038
Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., Rolinski, S., Stevanovic, M., & Dietrich, J. P. (2014). Land-use protection for climate change mitigation. Nature Climate Change, 4(12), 1095–1098. https://doi.org/10.1038/nclimate2444
Nicholls, R. J., & Lowe, J. A. (2004). Benefits of mitigation of climate change for coastal areas. Global Environmental Change, 14(3), 229–244. https://doi.org/10.1016/j.gloenvcha.2004.04.005